635 research outputs found

    Synthesis of artificial lymphoid tissue with immunological function.

    Get PDF
    The ability to generate functional artificial lymphoid tissue to induce specific immunity at ectopic sites could offer a potential breakthrough for treatment of diseases such as cancer and severe infection using immunotherapy. Artificial lymphoid tissue could also offer an informative tool to study further lymphoid tissue development and function in vivo. Here, we review the process of secondary and tertiary lymphoid organization, of which an understanding is essential for artificial lymphoid tissue synthesis. Using this knowledge, we consider the combination of cell types, soluble factors and scaffold properties that will enable proper accumulation and organization of lymphocytes into tissue grafts. Recent success in in vivo induction of artificial lymphoid tissue are also considered

    Systems Biology Reveals MicroRNA-Mediated Gene Regulation

    Get PDF
    MicroRNAs (miRNAs) are members of the small non-coding RNAs, which are principally known for their functions as post-transcriptional regulators of target genes. Regulation by miRNAs is triggered by the translational repression or degradation of their complementary target messenger RNAs (mRNAs). The growing number of reported miRNAs and the estimate that hundreds or thousands of genes are regulated by them suggest a magnificent gene regulatory network in which these molecules are embedded. Indeed, recent reports have suggested critical roles for miRNAs in various biological functions, such as cell differentiation, development, oncogenesis, and the immune responses, which are mediated by systems-wide changes in gene expression profiles. Therefore, it is essential to analyze this complex regulatory network at the transcriptome and proteome levels, which should be possible with approaches that include both high-throughput experiments and computational methodologies. Here, we introduce several systems-level approaches that have been applied to miRNA research, and discuss their potential to reveal miRNA-guided gene regulatory systems and their impacts on biological functions

    Greater Disruption Due to Failure of Inhibitory Control on an Ambiguous Distractor

    Get PDF
    Considerable evidence indicates that a stimulus that is subthreshold, and thus consciously invisible, influences brain activity and behavioral performance. However, it is not clear how subthreshold stimuli are processed in the brain. We found that a task-irrelevant subthreshold coherent motion led to a stronger disturbance in task performance than did suprathreshold motion. With the subthreshold motion, activity in the visual cortex measured by functional magnetic resonance imaging was higher, but activity in the lateral prefrontal cortex was lower, than with suprathreshold motion. These results suggest that subthreshold irrelevant signals are not subject to effective inhibitory control

    生食用ブドウの果色と果皮アントシアニンとの関係 : 果色育種への応用

    Get PDF
    第1章 緒論 第2章 栽培品種、系統の果皮アントシアニン組成 第3章 果色と果皮アントシアニンとの関係 第4章 果実の成熟と果皮アントシアニン 第5章 生育温度が果皮アントシアニン組成に及ぼす影響 第6章 光条件が果皮アントシアニン組成に及ぼす影響 第7章 交雑次代における果皮アントシアニン組成の変異 第8章 総合考察Made available in DSpace on 2012-06-28T07:06:45Z (GMT). No. of bitstreams: 2 watanabe_yu1.pdf: 12596109 bytes, checksum: 2376766ac51afdce3c4d6ce9b48a301a (MD5) watanabe_yu2.pdf: 10890715 bytes, checksum: 81946ce91cdd471ffb9ed1dfd45d3ea5 (MD5) Previous issue date: 1994-03-25主1-参

    Interference and feature specificity in visual perceptual learning

    Get PDF
    AbstractPerceptual learning (PL) often shows specificity to a trained feature. We investigated whether feature specificity is related to disruption in PL using the texture discrimination task (TDT), which shows learning specificity to background element but not to target element. Learning was disrupted when orientations of background elements were changed in two successive training sessions (interference) but not in a random order from trial to trial (roving). The presentation of target elements seemed to have reversed effect; learning occurred in two-parts training but not with roving. These results suggest that interference in TDT is feature specific while disruption by roving is not

    Effects of cold exposure on metabolites in brown adipose tissue of rats

    Get PDF
    Brown adipose tissue (BAT) plays an important role in regulation of energy expenditure while adapting to a cold environment. BAT thermogenesis depends on uncoupling protein 1 (UCP1), which is expressed in the inner mitochondrial membranes of BAT. Gene expression profiles induced by cold exposure in BAT have been studied, but the metabolomic biological pathway that contributes to the activation of thermogenesis in BAT remains unclear. In this study, we comprehensively compared the relative levels of metabolites between the BAT of rats kept at room temperature (22 °C) and of those exposed to a cold temperature (4 °C) for 48 h using capillary electrophoresis (CE) time-of-flight mass spectrometry (TOFMS) and liquid chromatography (LC)-TOFMS. We identified 218 metabolites (137 cations and 81 anions) by CE-TOFMS and detected 81 metabolites (47 positive and 34 negative) by LC-TOFMS in BAT. We found that cold exposure highly influenced the BAT metabolome. We showed that the cold environment lead to lower levels of glycolysis and gluconeogenesis intermediates and higher levels of the tricarboxylic acid (TCA) cycle metabolites, fatty acids, and acyl-carnitine metabolites than control conditions in the BAT of rats. These results indicate that glycolysis and β-oxidation of fatty acids in BAT are positive biological pathways that contribute to the activation of thermogenesis by cold exposure, thereby facilitating the generation of heat by UCP1. These data provide useful information for understanding the basal metabolic functions of BAT thermogenesis in rats in response to cold exposure

    Location-Specific Cortical Activation Changes during Sleep after Training for Perceptual Learning

    Get PDF
    Visual perceptual learning is defined as performance enhancement on a sensory task and is distinguished from other types of learning and memory in that it is highly specific for location of the trained stimulus. The location specificity has been shown to be paralleled by enhancement in functional magnetic resonance imaging (fMRI) signal in the trained region of V1 after visual training. Although recently the role of sleep in strengthening visual perceptual learning has attracted much attention, its underlying neural mechanism has yet to be clarified. Here, for the first time, fMRI measurement of human V1 activation was conducted concurrently with a polysomnogram during sleep with and without preceding training for visual perceptual learning. As a result of predetermined region-of-interest analysis of V1, activation enhancement during non-rapid-eye-movement sleep after training was observed specifically in the trained region of V1. Furthermore, improvement of task performance measured subsequently to the post-training sleep session was significantly correlated with the amount of the trained-region-specific fMRI activation in V1 during sleep. These results suggest that as far as V1 is concerned, only the trained region is involved in improving task performance after sleep

    Infection of RANKL-Primed RAW-D Macrophages with Porphyromonas gingivalis Promotes Osteoclastogenesis in a TNF-α-Independent Manner

    Get PDF
    Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-α. TNF-α directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts. Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early stages, but promoted osteoclast differentiation in late stages. However, the contribution to osteoclast differentiation of TNF-α produced by infected macrophages remains unclear. We show here that Porphyromonas gingivalis, one of the major pathogens in periodontitis, directly promotes osteoclastogenesis from RANKL-primed RAW-D (subclone of RAW264) mouse macrophages, and we show that TNF-α is not involved in the stimulatory effect on osteoclastogenesis. P. gingivalis infection of RANKL-primed RAW-D macrophages markedly stimulated osteoclastogenesis in a RANKL-independent manner. In the presence of the TLR4 inhibitor, polymyxin B, infection of RANKL-primed RAW-D cells with P. gingivalis also induced osteoclastogenesis, indicating that TLR4 is not involved. Infection of RAW-D cells with P. gingivalis stimulated the production of TNF-α, whereas the production of TNF-α by similarly infected RANKL-primed RAW-D cells was markedly down-regulated. In addition, infection of RANKL-primed macrophages with P. gingivalis induced osteoclastogenesis in the presence of neutralizing antibody against TNF-α. Inhibitors of NFATc1 and p38MAPK, but not of NF-κB signaling, significantly suppressed P. gingivalis-induced osteoclastogenesis from RANKL-primed macrophages. Moreover, re-treatment of RANKL-primed macrophages with RANKL stimulated osteoclastogenesis in the presence or absence of P. gingivalis infection, whereas re-treatment of RANKL-primed macrophages with TNF-α did not enhance osteoclastogenesis in the presence of live P. gingivalis. Thus, P. gingivalis infection of RANKL-primed macrophages promoted osteoclastogenesis in a TNF-α independent manner, and RANKL but not TNF-α was effective in inducing osteoclastogenesis from RANKL-primed RAW-D cells in the presence of P. gingivalis

    曲線折り動作のモデル化と可視化に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201
    corecore